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Accurate mapping of urban impervious surfaces is important but challenging due to the diversity of urban land
covers. This study presents an effort to synergistically combine optical and SAR data to improve the mapping
of impervious surfaces. Three pairs of optical and SAR images, Landsat ETM+ and ENVISAT ASAR, SPOT-5 and
ENVISAR ASAR, and SPOT-5 and TerraSAR-X, were selected in three study areas to validate the effectiveness of
the methods in this study. The potential of Random Forest (RF) was evaluated with parameter optimization for
combining the optical and SAR images. Experiment results demonstrate some interesting findings. Firstly, the
built-in out-of-bag (OOB) error is insufficient for accuracy assessment, and an assessment with additional refer-
ence data is required for combining optical and SAR images using RF. Secondly, the optimal number of variables
(m) for splitting the decision tree nodes in RF should be some different from the principles reported previously,
and an empirical relationship was given for determining the parameterm. Thirdly, the optimal number of deci-
sion trees (T) in RF is not sensitive to the resolutions and sensor types of optical and SAR images, and the optimal
T in this study is 20. Fourthly, the combined use of optical and SAR images by using RF is effective to improve the
land cover classification and impervious surface estimation, by reducing the confusions between bright impervi-
ous surface and bare soil and dark impervious surface and bare soil, as well as shaded area and water surface.
Even though the easily-confused land classes tend to be different in different resolutions of images, the effective-
ness of combining optical and SAR images is consistent. This improvement is more significant when combing
lower resolution optical and SAR images. The conclusions of this study could serve as an important reference
for further applications of optical and SAR images, and as a potential reference for the applications of RF to the
fusion of other multi-source remote sensing data.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Urban impervious surfaces, such as transport related land (e.g., roads,
streets, and parking lots) and building roof tops (commercial, residential,
and industrial areas), have beenwidely recognized as important indicator
for urban environments (Arnold &Gibbons, 1996; Hurd & Civco, 2004; Lu
& Weng, 2006; Weng, 2001; Weng, Lu, & Liang, 2006; Yuan & Bauer,
2007). Remote sensing has become the major technique to estimate im-
pervious surfaces due to its low cost and convenience for the impervious
surface mapping from local to global scales. Numerous methods have
been proposed to estimate impervious surfaces from remotely sensed
images, including sub-pixel approaches (e.g., the spectral mixture analy-
sismethod (Wu&Murray, 2003;Wu, 2004), the classification and regres-
sion tree model (Yang, Xian, Klaver, & Deal, 2003), the artificial neural
network (Weng & Hu, 2008), and the support vector machine (Sun,
Guo, Li, Lu, & Du, 2011)) and per-pixel approaches such as conventional
classificationmethods (Weng, 2012). Recently, a biophysical composition
index (BCI) was proposed to extract urban impervious surfaces following
52 26037470.
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the VIS conceptual model (Deng & Wu, 2012). However, most of these
approaches were proposed with optical remote sensing images, and
accurate estimation of impervious surfaces remains challenging due to
the diversity of urban land covers, leading to difficulties of separating
different land covers with similar spectral signatures (Weng, 2012).
For instance, dry soils or sands are reported to be confused with bright
impervious surfaces due to their high reflectance,whilewater and shades
tend to be confused with dark impervious surfaces.

The use of multi-satellite images is considered as one promising
approach to improve the accuracy of impervious surfaces (Weng,
2012). SAR is able to provide useful information about urban areas as
it is sensitive to the geometric characteristics of urban land surfaces
(Calabresi, 1996; Henderson & Xia, 1997; Leinenkugel, Esch, &
Kuenzer, 2011; Soergel, 2010; Tison, Nicolas, Tupin, & Maitre, 2004;
Zhang, Zhang, & Lin, 2012), and thus SAR has been identified as an
important source to help extract impervious surfaces with optical data
(Jiang, Liao, Lin, & Yang, 2009; Weng, 2012; Yang, Jiang, Lin, & Liao,
2009). Fusion between optical and SAR data can be performed on
three different levels: pixel-level, feature-level, and decision-level.
Pixel-level fusion is reported inappropriate for SAR images because of
speckle noises (Zhang, Yang, Zhao, Li, & Zhang, 2010). For feature-level
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fusion, several approaches have been proposed including layer-stacking
and ensemble-learningmethods (e.g., bagging, boosting, AdaBoost &Ran-
dom Forest (Hall & Llinas, 1997; Rokach, 2010)). The ensemble-learning
methods can be combined with different classifiers (e.g., ANN and SVM
(Rokach, 2010)). For decision-level fusion, various weighting methods
(e.g., majority voting, entropy weighting, and performance weighting)
and the Dempster–Shafer theory have been applied. However, conven-
tional classifiers with a layer-stacking technique are not appropriate
in this case as optical reflectance and SAR backscattering data do not
correlate (Zhang et al., 2010). Among these methods, the decision-tree
(DT) method will be given more attention, while the Random Forest
(RF) algorithm has been reported to perform excellently in the fusion of
optical and SAR data (Waske & van der Linden, 2008). However, the
potential and effectiveness of RF on the fusion between optical and SAR
images needs to be explored, especially in terms of the estimation of
urban impervious surfaces.

This study aims to evaluate the effectiveness of RF to synergistically
combine the optical and SAR data in terms of impervious surface esti-
mation. A combination of pixel level and feature level fusion method
is adopted. Additionally, the Kappa coefficient based on confusion
matrix and the OOB error built-in the RF are compared to assess the
effectiveness of fusing optical and SAR images.

2. Study area and data sets

2.1. Study area

Three cities, Guangzhou, Shenzhen and Hong Kong, located in the
Pearl River Delta (PRD) are selected as the study areas to evaluate the
effectiveness of the proposed approach. The region is located on the
Pearl River Estuary (PRE), known as the third largest metropolitan
area in China, experiencing tremendously fast development during the
past 30 years. The region has rapidly become urbanized, with a popula-
tion of over 19 million in an area of over 21 thousand km2 (Fan, Wang,
& Wang, 2008). However, due to significant interactions between
human population and environment, environmental issues quickly
emerged causing a series of problems, including air and water pollution
(Zhang et al., 2008). As key indicators of urban growth and related envi-
ronmental problems, impervious surfaces and their distribution are
being paid greater attention by the local government. Thus, the accurate
estimation of urban impervious surfaces is of high significance for the
environment studies of PRD.

2.2. Satellite data and coregistration

Three different combinations of optical and SAR satellite data sets
are selected for the three cities (Fig. 1). For Guangzhou, a scene of
Landsat ETM+ image and a scene of ENVISAT Advanced Synthetic
Aperture Radar (ASAR)Wide SwathMode (WSM) image are employed.
The ETM+ images have one panchromatic band at 15 m resolution and
6 bands at 30 m resolution. In this study, only the 30-m data were used.
The ETM+ image was acquired on 31 December 2010. As there are
stripes on the eastern and western edges of each scene because of the
footprints (location and spatial extent) of each band due to the Scan
Line Corrector (SLC) failure, a process should be applied to get rid of
these stripes. For this reason, the study area is located in the middle of
each scene where there are no stripes, and thus no stripe removal
operation should be applied.We assume that the atmospheric condition
is clear and homogeneous and the small part of clouds would not signif-
icantly impact the whole scene of image, and thus no atmospheric cor-
rection was performed (Wu &Murray, 2003). The ENVISAT ASARWSM
datawere obtained on 23 September, 2010, on the descending direction
with V/V polarization and a pixel size of 75 × 75 m.

For the Shenzhen City, a scene of SPOT-5 image and a scene
of ENVISAT ASAR ASA_IMP_1P data are used. The SPOT-5 image is a
precision 2A level data, and was obtained on 21 November 2008, with
a spatial resolution of 10 m. The ASAR data were obtained on 19
November 2008, on the ascending direction, Track-25 of ENVISAT,
with V/V polarization. The spatial resolution of the ASAR IMP data is
12.5 m. Due to the speckle noises, Enhanced Lee filter is selected to filter
the speckle noises in the ASAR data. Enhanced Lee filter is an improved
version of Lee filter which was designed to better and preserve texture
information, edges, linear features and point targets in SAR images (Lee,
1983). Enhanced Lee filter is an adaptive filter which was proved to be
more suitable for preserving radiometric and textural information
than other speckle filters (Lopes, Touzi, & Nezry, 1990; Xie, Pierce, &
Ulaby, 2002).

For Hong Kong, a SPOT-5 and a SAR image from TerraSAR-X are
employed. The SPOT-5 image is also a precision 2A level data, and was
obtained on 21 November 2008, with a spatial resolution of 10 m.
TerraSAR-X (TSX) is a German earth observation satellite launched on
15 June 2007 and is still on operation. TSX operates in the X band
(9.6 GHz) and has three main imaging modes, SpotLight, StripMap and
ScanSAR. The TSX image used in this studywas obtained in the StripMap
mode, on 16 November 2008, with a spatial resolution of 3 × 3 m, and
the scene size is 30 km (width) × 50 km (length). The TSX image was
geocodedwith the NEST (Next ESA SAR Toolbox) 4C-1.1 software devel-
oped by ESA, under the coordinate system of WGS84 and UTM (Zone
50N). Moreover, geometric correction was also conducted by the
Range-Doppler Terrain Correction in NEST with Digital Elevation
Model (DEM) data. Additionally, due to the uncertainty of speckle noises
in SAR images, Enhanced Lee filter is selected to filter the speckle noises.

After preprocessing all the satellite images, both optical images and
SAR images were coregistered to the same geo-reference system of the
Universal Transverse Mercator (UTM) projection (Zone 50N) and
Datum World Geodetic System 84 (WGS84). Over 20 control points
were manually selected for each pair of optical and SAR images,
and the linear transformation approach is used to conduct the
coregistration. The spatial resolutions of the final registered images are
determined by the corresponding optical image which is clearer for
human perception and easier for the manual selection of control points
(Table 1). The Root Mean Square Error (RMSE) of the coregistration for
each pair of optical and SAR images is less than half pixel.
3. Methods

3.1. Feature extraction

According to previous literatures, segmentationmethods are superior
over pixel by pixel methods as segmentation methods take the texture
characteristics into account (Dell'Acqua & Gamba, 2003; Stasolla &
Gamba, 2008). Texture is important for the interpretation of SAR data be-
cause the speckles in SAR data result in difficulties for the pixel by pixel
approach. Therefore, in order to extract complementary information for
urban impervious surfaces from optical and SAR images, texture feature
extraction is necessary and important. In this paper, the popular gray
level co-occurrence matrix (GLCM) approach (Haralick, Shanmuga, &
Dinstein, 1973) is employed to analyze the texture features. For the appli-
cation of GLCM, the size of image block and the texture measures with
GLCM have been a major issue (Marceau, Howarth, Dubois, & Gratton,
1990). In terms of the classification of remote sensing images in urban
areas, it is reported that a window size of 7 × 7 pixels is suitable with a
test on the resolutions from 2.5 m × 2.5 m to 10 m × 10 m (Puissant,
Hirsch, & Weber, 2005). Moreover, four texture measures, the homoge-
neity (HOM), dissimilarity (DISS), entropy (ENT), and the angular second
moment (ASM), were identified as effective indicators for the texture
description of different urban land cover types (Puissant et al., 2005).
However, since the spatial resolution of the registered Landsat ETM+
and ASAR image is 30 m, the window size for calculating GLCM should
be smaller as terrains are smaller under coarser resolution. Thus, in this
study, the window size is set as 7 × 7 pixels for Shenzhen and Hong



Study Areas Optical Images SAR Images

Guangzhou

Landsat ETM+ ENVISAT ASAR (WSM)

Shenzhen

SPOT-5 ENVISAT ASAR (IMP)

Hong Kong

SPOT-5 TerraSAR-X

Fig. 1. Comparison of ISA estimation with optimal parameter configurations.

Table 1
Coregistration design between optical and SAR images.

Study areas Optical image (base image) SAR image Registered result

Satellite sensor Resolution (m) Satellite sensor Resolution (m) Resolution (m)

Guangzhou Landsat ETM+ 30 ENVISAT ASAR (WSM) 75 75
Shenzhen SPOT-5 10 ENVISAT ASAR (IMP) 12.5 10
Hong Kong SPOT-5 10 TerraSAR-X 3 10
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Table 2
Number of bands and features as the input into the RF algorithm.

Study area Number of bands Number of texture
feature images

Total number of
images input into RF

Guangzhou 7 28 35
Shenzhen 5 20 25
Hong Kong 5 20 25
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Kong cases, and 3 × 3 for the Guangzhou case. Four texture measures,
HOM, DISS, ENT, and ASM, are employed for all the three cases.

If we combine the SAR image as a band to the optical images, then
we can calculate the total number of images (bands) which are the
input of RF. Table 2 shows the number of band and number of texture
features from both optical and SAR images, and the total number of
images input into the RF algorithm. It shows that there are a total of
35 variables for the Guangzhou case, 25 variables for Shenzhen, and
25 variables for Hong Kong.
3.2. The Random Forest (RF) algorithm

The general strategy of RF was proposed by Breiman (2001), which
is based on randomly re-sampling the input training data. RF has been
applied in diverse remote sensing studies (Gislason, Benediktsson, &
Sveinsson, 2006; Ham, Chen, Crawford, & Ghosh, 2005; Pal, 2003), and
is proved to have a comparable performance to more complex methods
like support vectormachinewhich ismuchmore time consuming (Guo,
Chehata, & Boukir, 2010; Guo, Chehata, Mallet, & Boukir, 2011;Waske &
van der Linden, 2008). Several advantages make RF suitable for remote
sensing studies (Guo et al., 2011; Yu, Hyyppa, Vastaranta, Holopainen, &
Viitala, 2011). Firstly, RF does not overfit when the number of trees
increases (Breiman, 2001). Secondly, RF does not need any additional
feature selection since a random selection of features is built in it
(Yu et al., 2011). Thirdly, RF makes no distributional assumptions
about the data sets and can handle situations where the training data
set is small while the predicted data set is large (Cutler, Edwards,
Beard, Cutler, & Hess, 2007).
N training
samples

Random
Subset 1

OOB
Subset 1

Build
Decision Tree

1

Random
Subset 2 S

Build
Decision Tree

2

Vote the
classes

Vote the
classes

Decision on final classificatio

Fig. 2. Flowchart of the Rando
The basic idea of RF is to growmultiple decision trees on the random
subsets of the training data and related variables (Stumpf & Kerle,
2011). A brief description for this algorithm is as follows:

Input: N training samples, withM variables/features in each sample,
and μ is the size of subset of training samples, μ b N.
Output: a trained Random Forest with T decision trees:
1. Choose a training subset for a tree with replacement by T

iterations in all training samples;
2. For each node, randomly choose m variables to determine the

decision rules at that node. Calculate the best split based on
thesem variables in the training subset (m b M);

3. Return to step 1 until T iterations end.

Fig. 2 illustrates the basic flowchart of the RF algorithm. In the first
step, to build a decision tree, about one third of training samples are
left out by the random selection, and these samples are called out-of-
bag samples (Yu et al., 2011). The out-of-bag (OOB) samples are used
as the testing data for the grown decision tree.When building a decision
tree, each tree node will be determined bym variables randomly select-
ed from the M variables. After the training procedure, T decision trees
are built as the Random Forest, which will be used as the classifier. To
classify each new pixel, each decision tree will get a classification result
as a vote to that class. Finally, the class with majority votes from all the
decision trees will be assigned as the class of the pixel.

In this study, one training sample corresponds with the location of a
pixel, with the M variables/features representing the feature informa-
tion from both optical and SAR images. In particular, a training sample
in this case can be expressed as a vector consisting of the following
two components (two groups of features): 1) reflectance of each optical
band and 2) texture features of the ASAR images. The first group is from
optical images and the second is derived from SAR data. For the texture
features of the ASAR image, the gray level co-occurrencematrix (GLCM)
is applied to extract the texture features (Haralick et al., 1973).

3.3. Parameter configuration of Random Forest (RF)

The success of RF depends on the prediction accuracy of each
decision tree and the correlation between different decision trees
OOB
ubset 2

Random
Subset T

OOB
Subset T

Build
Decision Tree

T

Vote the
classes

n

m Forest (RF) algorithm.
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(Breiman, 2001). In order to reduce correlation, two random selection
procedures are employed (Yu et al., 2011): 1) a random selection of
train samples in each of the T iterations to grow each decision tree
and 2) a random selection of variables (or features) to selectm variables
to determine each node in a tree. Therefore, two parameters are signif-
icant for the success of RF in the fusion of optical and SAR images, the
number of decision trees (T) and the number of features (m) at each
node for spilling.

For the number of trees, it was reported that T can be any value
defined by the user (Pal, 2003). For the number of features, previous
studies suggested m to be the root of the total number of features
(Gislason et al., 2006; Stumpf & Kerle, 2011). However, in previous
applications of RF, there are often a number of features, while the num-
ber of features in this case for the impervious surface estimation is very
limited. Thus, it is still not clear what the optimal number should be for
the random selection of features. Therefore, in this paper, a quantitative
analysis is designed to test the impacts of T andm on the performance of
RF for the fusion of optical and SAR data for impervious surface
estimation.

In addition, the splitting rule is also important for the selection of
features. There are several selection approaches in literatures, e.g., the
Quinlan's Information Gain Ratio (Quinlan, 1986), the Gini Index
(Breiman, 1984), and theMingers's G statistic (Mingers, 1989). Howev-
er, the Gini Index is the most frequently used for RF as it measures the
impurity of an attribute by searching the largest class and isolating it
from the rest of the data (Breiman, 1984; Pal, 2003). In this study, the
Gini Index is employed to measure the impurity for each node to find
the best combination of features (variables). The following equation
describes the Gini index of note t (Zambon, Lawrence, Bunn, & Powell,
2006):

Gini tð Þ ¼
XL

i¼1

pi 1−pið Þ ð1Þ

where pi denotes the relative frequency of each class in the training sub-
set, and L is the total number of classes. pi can be determined by dividing
the total number of samples of the class i by the total number of samples
in the subset.

3.4. Classification strategy and accuracy assessment

Mapping impervious surfaces at per-pixel level is actually a classifi-
cation task, where impervious and non-impervious surfaces are a
combination of various land cover types. Conventional land use/land
cover (LULC) includes vegetation, urban area, water, etc., and each
land cover type shares similar spectral and spatial characteristics. So,
they are often identified individually during the classification proce-
dure. However, impervious/non-impervious surfaces consist of various
land cover materials. For instance, impervious surfaces can be made
up of darkmaterials (e.g., asphalt and old concrete) and brightmaterials
(e.g., new concrete and metal), while non-impervious surfaces are also
very diverse in materials (e.g., vegetation, water, and base soils). In this
study, a two-step approach is employed to estimate the impervious sur-
faces. Firstly, six land cover types, dark impervious surface (dark IS),
bright impervious surface (bright IS), vegetation, water body, bare
soil, and shaded areas, are identified with a classification procedure
using RF. Secondly, a combination procedure is conducted to combine
various land covers into impervious and non-impervious surfaces.

In particular, shaded areas are treated as a single land cover type as
they often have unique spectral and spatial characteristics. Moreover,
since shaded areas may be impervious (e.g., roads and rooftops)
or non-impervious (e.g., greening areas), they are treated as non-
impervious surface in the second step of combination in this study.
Therefore, dark IS and bright IS are combined as impervious surface,
while vegetation, water, bare soil and shade are combined as non-
impervious surface. This may cause some incorrectness since shaded
areasmay contain impervious surfaces such as roads or rooftops. Howev-
er, this incorrectness is unavoidable if only optical images are used. This
is actually one of themotivations of this study to synergize SAR images to
reduce these shaded areas. This assumption will be justified in the
Results and discussion section of this paper. Additionally, as misclassifi-
cation may happen not only between impervious and non-impervious
land cover types, but also among different subtypes of impervious or
non-impervious types, the accuracy of classification before and after
the combination operation may be different. So, in this study, accuracy
assessment is conducted on the classification results before and after
the combination of impervious/non-impervious surfaces.

Two accuracy indices are employed to assess the accuracy of imper-
vious surface estimation. One is the out-of-bag (OOB) error, which is
built in the RF algorithm. The OOB error is calculated based on the train-
ing samples, as the training samples are separated into two parts in the
RF algorithm, one part for constructing the RF, and the other for evalu-
ating the performance of RF. However, a low OOB does not necessarily
guarantee the best performance of a RF when it is applied to other
data set other than the training samples. Therefore, the overall accuracy
and Kappa coefficient based on the confusion matrix are also employed
to assess the accuracy (Jensen, 2007). In addition, reference data are col-
lected through visual interpretation of the optical and SAR images in the
three study areas. Higher resolution satellite images from Google Earth
near the corresponding dates are used to help the visual interpretation.
Moreover, Orthophoto in Hong Kong, with 0.5 × 0.5 meter resolution,
was purchased from the Hong Kong governmental agency, to help
improve the quality of visual interpretation of the Hong Kong images.
Finally, 1528 samples were collected for Guangzhou area, 1949 samples
were collected for Shenzhen area, and 1537 samples were collected for
HongKong area. Of these reference samples, 50%were used as the train-
ing samples to construct the RF, and 50% were used as the test samples
to validate the results and test the effectiveness of the method.

4. Results and discussion

4.1. Texture features of optical and SAR images

Four texturemeasures based on the GLCMwere produced fromboth
optical and SAR images of three study areas (Fig. 3). Different character-
istics were shown of the features because of not only the optical/SAR
sensors but also the resolutions. In the Guangzhou case, urban areas
are highlighted in the DISS feature of the optical image, which it is con-
fusedwith vegetation in other features. In the SAR features, urban areas
are more obviously separated, especially in ENT, HOM and ASM fea-
tures. In the Shenzhen case, vegetation and urban areas are not obvious-
ly separated, and shade andwater are almost confused in all the features
of the optical image. Meanwhile, urban areas are highlighted in the SAR
texture features, especially in the areas with high buildings, where the
surface roughness brings high backscattering to SAR image. The most
unique advantage of SAR features in this case is that shaded areas
resulting from high buildings, which are not separable from water in
optical features, are separated from water based on SAR features. How-
ever, these highlighted areas are only a part of urban areas, and those
with lower buildings are not highlighted. So, using only SAR image fea-
tures is insufficient to extract the impervious surfaces, and combining
the two data sources is necessary to extract impervious surfaces more
accurately. In the Hong Kong case, the features from optical image do
not provide very good separation between urban and non-urban
areas. Moreover, water in the northwest part is classified into two
cover types due to the diversity ofwater quality, and thusmakes the op-
tical image not suitable for isolating water surfaces in this case. On the
other hand, the DISS and ENT features of the SAR images provide good
information for distinguishing urban from non-urban areas. Especially,
water is well separated in all the features of the SAR images, which
provides very good compensation to the optical features.
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Fig. 3. GLCM texture features of optical and SAR images. DISS: dissimilarity; ENT: entropy; HOM: homogeneity; ASM: the angular second moment.
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4.2. Determine the optimal number of features in each decision tree

To test the impacts of the number of variables selected for split-
ting each node in the decision trees, the number is changed from 1
to the total number of variables. Meanwhile, as the number of deci-
sion trees in the RF also influences the results, 4 levels of the number
of decision trees are selected to test this influence, that is, 5, 10, 15,
and 20, respectively. The Kappa coefficient and the OOB error built
in the RFwere employed to assess the accuracy of impervious surface
estimation. Fig. 4 illustrates the influences of the variation of the
number of variables under the selected 4 different numbers of deci-
sion trees.



a) Guangzhou: Kappa coefficient                 b) Guangzhou: OOB error

c) Shenzhen: Kappa coefficient d) Shenzhen: OOB error

e) Hong Kong: Kappa coefficient f) Hong Kong: OOB error

Fig. 4. Impacts of different numbers of variables (or features) in each decision tree.
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Firstly, for the Kappa coefficient, a similar pattern is observed for all
the 4 different numbers of decision trees. The Kappa coefficient in-
creases quickly at first as the number of selected variables increases,
reaches a peak and then decreases steadily with slight fluctuation. The
peaks of the curves are located on different positions for the three
study areas. They are approximately located on 8 variables, 6 variables,
and 6 variables for Guangzhou, Shenzhen, and Hong Kong, respectively.
In addition, the different numbers of decision trees can have significant
impacts on the Kappa coefficient. The results demonstrate that more
decision trees tend to produce a more accurate result, as shown in
Fig. 4(a, c, and e). However, the gap between two neighboring curves
becomes smaller and smaller as the number of decision trees increases,
and there is a large part of overlay between the two curves for 15 and 20
decision trees for all the three study cases.

Secondly, theOOBerror varieswith the number of decision trees and
study cases, as shown in Fig. 4(b, d, and f). However, the changing pat-
tern of the OOB error is different from that of the Kappa coefficient. At
the beginning stage, the OOB error decreases quickly as the number of
selected variables increases, and reaches the lowest point. From then
on, an increase of the number of variables does not have significant im-
pacts on the OOB error, which becomes relatively steady. Therefore, the
curves are almost parallel in the last part though the number of decision
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trees differs. For different study cases, the OOB error firstly reaches its
lowest point when the number of selected variables is 9, 7 and 6, for
Guangzhou, Shenzhen, and Hong Kong, respectively. However, the
number of decision trees has significant impacts on the accuracy for a
given case even though the pattern of each curve is similar. More deci-
sion trees tend to produce a lower OOB curve steady values. However,
the gaps between two neighboring curves also become narrower and
narrower when the number of decision trees increases.

As reported in previous researches, the number of features in each
decision tree was suggested to be the root of the total number of vari-
ables from an empirical point of view (Gislason et al., 2006; Stumpf &
Kerle, 2011). Thus, according to Gislason et al. (2006) and Stumpf and
Kerle (2011), the optimal number of features in each decision tree
should be 6, 5, and 5, for Guangzhou, Shenzhen, and Hong Kong, as
there are a total of 35, 25, and 25 variables, respectively (Table 2). In
this study, the observed optimal number of features is 8, 6, and 6, con-
sidering the Kappa coefficient, while this value is 9, 7, and 6, considering
the OOB error. This result indicates that the optimal number of variables
should be a little bit higher than the root of the total number of vari-
ables. In addition, the optimal numbers of variables are not exactly the
same by considering the best Kappa coefficient and by considering the
lowest OOB error, even though they are closed. This result also indicates
that only the built-in accuracy assessment of RF (OOB error)may not re-
flect the real accuracy of the classification result, as the optimal number
of variables differs based on the Kappa coefficient and OOB error. There-
fore, additional testing data are needed in order to evaluate the accuracy
of the classification using RF. In this study, we set the optimal number of
variables according to the best Kappa coefficient, since additional
testing samples are more frequently used to validate the classification
results in remote sensing applications. Moreover, in order to provide a
reference for further similar applications, a simple rule of determining
the optimal number of variables in RF is given in Eq. (2), according to
the experiment results and discussion.

m ¼
ffiffiffiffiffi
M

p
þ 1 ð2Þ

wherem is the optimal number of variables to determine the nodes in a
decision tree in RF, andM is the total number of variables. The function
⌊x⌋means the largest integer not greater than x. Eq. (2) indicates that the
optimal number of variables is a little bigger than the root of the total
number of variables.

4.3. Determine the optimal numbers of decision trees in the Random Forest
(RF)

According to the result of Section 4.2, the impacts of the number of
decision trees on the classification accuracy can be significant. Even
though this impact tends to be reduced when the number of decision
trees increases, there are only 4 different numbers of decision trees test-
ed, and further experiments are needed in order to get insight into the
impacts of this factor. In this experiment, the number of decision trees
is changed to a larger range from 1 to 60. Similarly four different
numbers of variables are selected. However, since the total numbers
of variables are different for every study cases, 3, 6, 9, and 12 variables
are selected for Guangzhou, while 2, 5, 8, and 11 variables are used for
Shenzhen and Hong Kong. Corresponding results are illustrated in
Fig. 5, where some interesting findings are demonstrated.

Firstly, the Kappa coefficient shows a very tight and similar pattern
for the 4 different numbers of variables, that is, it increases quickly as
the number of decision trees goes up and then reaches amaximal num-
ber. For then on, the Kappa coefficient keeps relatively steady when the
number of decision trees continues to increase. What is more interest-
ing is that even though the selected number of variables, the sensors,
and the spatial resolutions are different for the three study cases, the
starting points where the Kappa coefficient becomes steady are almost
the same, which is approximately 20 decision trees in this research.
Nonetheless, the maximal Kappa coefficients are different for the
three cases, which are about 0.92 for Guangzhou, 0.95 for Shenzhen,
and 0.97 for Hong Kong.

Secondly, the RF built-in accuracy, OOB error, demonstrates a consis-
tent result with the variation of selected number of variables and three
study cases. For all the 4 different numbers of variables, the changing
pattern of the curves is very similar, and the gap between two curves
is highly close. The OOB error firstly drops down very fast and then
becomes steady after the number of decision trees reaches 20, which
is consistent with the changing pattern of the Kappa coefficient. Addi-
tionally, the steady values of the OOB error are different for three
study cases. The minimal value of OOB error is approximately 0.09 for
Guangzhou, 0.08 for Shenzhen, and 0.05 for Hong Kong.

The experiment results indicate that the optimal number decision
trees are independent on the number of selected variables for splitting
each node in a decision trees, and it is also independent on the types
of sensors and the spatial resolutions of remote sensing images. Since
the construction of more decision trees requires more building time of
the RF, the optimal number of decision trees should be the first position
when the Kappa coefficient reaches the highest and the OOB error
reaches its lowest point. In specific application, this optimal number of
decision trees can be determined by a statistical procedure similar to
this experiment, and for this study, 20 decision trees are the best for a
RF to combine the optical and SAR data for impervious surface
estimation.

4.4. Impervious surface estimation with optimized RF

In order to perform RF to classify impervious surface using both
optical and SAR images, the optimal parameters should be used to con-
figure the RF. According to the results of Section 4.2, the optimal number
of variables should be 8, 6, and 6, for Guangzhou, Shenzhen, and Hong
Kong, respectively. The optimal number of decision trees should be 20
for all the three cases, according to the results of Section 4.3. Additional-
ly, to evaluate the effectiveness of the combined use of optical and SAR
images for impervious surface estimation, optical images alone are used
to extract impervious surface for each of the study case. Table 3 shows
the total number of variables when using only optical images.

Therefore, according to the empirical rule given in Eq. (2), the opti-
mal number of variables for determining each tree node should be 6,
5, and 5, for Guangzhou, Shenzhen, and Hong Kong. For the number of
decision trees, the result in Section 4.3 indicates that 20 decision trees
are the best for all the three cases. Since the total number of variables
using optical images alone is smaller than that of combiningboth optical
and SAR images, the optimal number of decision trees in this case
should probably be smaller than 20. However, Fig. 4 indicates that 20
decision trees would also get the best results when the optimal number
is smaller than 20. Therefore, 20 decision trees are also used to build the
RF when using optical images alone.

In order to provide a better understanding of the behaviors of the RF
algorithm to classify different land cover types, the LULC result before
combining the impervious and non-impervious land covers is provided,
with the detailed confusion matrices being shown in Table 4. Firstly,
for the Guangzhou case, when using only optical image, bright impervi-
ous surface (BIS) was easily confused with bare soil (SOI). For instance,
16 pixels of BIS was mistakenly classified as SOI, while 21 pixels of SOI
was classified as BIS. So, there are a total of 37 pixels incorrectly classi-
fied. However, after combining the optical and SAR images, only 6 pixels
of BIS was classified as SOI, and 15 SOI pixels classified as BIS pixels. The
total number ofmisclassified pixels for these two classeswas reduced to
21. As a result, with the additional use of SAR image, the overall accuracy
(OA) was improved from 91.10% to 93.72%, while the Kappa coefficient
increased from 0.8877 to 0.9208. Secondly, for the Shenzhen case, dark
impervious surface (DIS) seems to be more easily confused with bare
soil (SOI). Before combing optical and SAR data, 4 pixels of SOI was
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classified as DIS, and 5 pixels of DIS was classified as SOI. Nevertheless,
after combing the two data sources, these two figureswere reduced to 0
and 1. Thus, the total number of misclassified pixels between these two
classes was reduced from 9 to 1. Moreover, confusion matrices also
show that shaded area (SHA) was also confused with DIS, and this situ-
ation can also be improved with the additional use of SAR data. In gen-
eral, the OA increased from 95.89% to 96.41%, and the Kappa coefficient
from 0.9507 to 0.9568. Thirdly, for the Hong Kong case, the easy confu-
sion classes turned to SHA andwater surface (WAT).While using optical
a) Guangzhou: Kappa coefficient

c) Shenzhen: Kappa coefficient

e) Hong Kong: Kappa coefficient

Fig. 5. Impacts of different numbers
data alone, 10 WAT pixels was classified as SHA, and 4 SHA pixels was
classified as WAT. After combining optical and SAR images, only 4
WAT pixels and 3 SHA pixels were incorrectly classified. As a result,
the OA increased from 96.88% to 98.44, together with the Kappa coeffi-
cient increased from 0.9624 to 0.9812.

In general, two important conclusions can be drawn from the above
results. First, when using different combinations of optical and SAR im-
ages, the land cover classes that are easily confused are not necessarily
the same. This may be caused by the types of sensors, the resolutions
b) Guangzhou: OOB error

d) Shenzhen: OOB error

f) Hong Kong: OOB error

of trees in the Random Forest.



Table 3
Number of bands and features using optical images alone.

Study area Number of bands Number of texture
feature images

Total number of images
input into RF

Guangzhou 6 24 30
Shenzhen 4 16 20
Hong Kong 4 16 20

164 Y. Zhang et al. / Remote Sensing of Environment 141 (2014) 155–167
of the optical and SAR images, and the study areas. For instance, for
higher image resolution of Shenzhen and Hong Kong, shaded areas
from tall buildings are more easily detected. These shaded areas
would be easily confused with dark impervious surface and water sur-
face. Second, even though the easy confusion classes are not always
the same in different study cases, the effectiveness of combing the opti-
cal and SAR images can be verified and confirmed with an increase of
both overall accuracy and Kappa coefficient.

Then, in the second step, DIS and BIS were combined as impervious
surface (IS), while vegetation (VEG),WAT, SOI, and SHAwere combined
as non-impervious surface (NIS). Fig. 6 demonstrates the impervious
surface mapping results with and without the combination of optical
and SAR images. Fig. 6 shows a quite consistent IS mapping for the
Guangzhou case. Somedifferences cannot be seen from themapping re-
sults due to the coarse resolution. In the Shenzhen case, a noticeable
overestimation can be observed when using optical image alone. This
situation was improved significantly after combining both optical and
SAR images by reducing the misclassification in the greening areas
and shaded areas. In theHongKong case, themisclassification of shaded
areas and bare soil in the north-eastern part is reduced by incorporating
the optical and SAR images. However, negative effect can also be seen in
mountainous area in the south-western part due the layover effects of
SAR images. The layover effects in mountainous area resulted in high
scattering areas which were mistakenly treated as impervious surface.
However, this negative effect can be easily removed by using the Digital
Elevation Model (DEM) to mask out the mountainous areas.
Table 4
Confusion matrices for the urban land cover classification.

Optical

VEG DIS BIS WAT SOI SHA

Guangzhou
VEG 192 3 0 0 3 0
DIS 1 150 9 1 0 0
BIS 1 9 80 0 16 0
WAT 0 0 0 160 0 0
SOI 3 1 21 0 114 0
SHA 0 0 0 0 0 0

OA: 91.10% Kappa: 0.8877

Shenzhen
VEG 181 0 0 2 0 0
DIS 0 157 2 0 5 9
BIS 0 1 144 0 1 0
WAT 0 0 0 154 0 1
SOI 1 4 0 0 160 0
SHA 3 11 0 0 0 138

OA: 95.89% Kappa: 0.9507

Hong Kong
VEG 147 0 0 0 2 0
DIS 0 139 1 0 0 1
BIS 0 0 114 0 0 0
WAT 0 2 0 111 0 10
SOI 1 1 1 0 113 0
SHA 0 1 0 4 0 120

OA: 96.88% Kappa: 0.9624

Note: VEG — vegetation; DIS — dark impervious surface; BIS — bright impervious surface; WA
To better understand the results quantitatively, new confusion ma-
trices are computed in Table 5. The results in Table 5 are generally con-
sistent with that in Table 4, while the OA and Kappa coefficient are
generally higher, since the confusion between two impervious classes
or two non-impervious classes is removed after the second step of com-
bination. Firstly, Table 5 demonstrates that all the misclassification be-
tween IS and NIS was noticeably reduced after combining the optical
and SAR images, for Guangzhou, Shenzhen, and Hong Kong. Secondly,
the increase of OA ad Kappa coefficient is higher in the Guangzhou
case, where OA was improved by 2.5% (=96.73%–94.24%) and Kappa
value was increased by 5.48% (=0.9288–0.8740). However, the accura-
cy increased only about 1% for both OA and Kappa coefficient in the
Shenzhen and Hong Kong cases. This result indicates that the combined
use of optical and SAR images by RF is more effective for low resolution
of images, where there are more confusions between bright impervious
surface and bare soil. SAR is sensitive to surface roughness and soil
moisture, which is important to differentiate bright impervious surface
and bare soil. Therefore, the confusion between these two classeswould
be greatly reduced, leading to a noticeable increase of the overall accu-
racy and Kappa coefficient.

Generally, backscattering information in SAR imagery can contribute
to improving the accuracy of impervious surface estimation in three dif-
ferent ways. Firstly, since microwave is very sensitive to the geometric
configurations of land surface, the backscattering of microwave carries
lots of information about geometric features in urban areas, such as
the surface roughness determined by buildings and transportation net-
works. Therefore, SAR images addmore distinguishable information be-
tween impervious surface and non-impervious surface. Secondly,
microwave is also sensitive to moisture including the moisture in bare
soil and the water content in vegetation. This characteristic makes SAR
imagery easier to separate bare soils and bright impervious surface by
reducing the spectral confusion using optical images alone, which is
the situation in this study area. Thirdly, SAR remote sensing often
works in a side-looking way, leading to a different view angle from
that of optical remote sensing. As a result, shaded areas in optical images
are often not shaded in the corresponding SAR images, and thus land
Optical + SAR

VEG DIS BIS WAT SOI SHA

193 1 0 0 4 0
0 152 9 0 0 0
0 7 93 0 6 0
0 2 0 158 0 0
3 1 15 0 120 0
0 0 0 0 0 0
OA: 93.72% Kappa: 0.9208

181 0 0 2 0 0
0 165 1 0 1 6
0 0 144 0 2 0
0 0 0 153 0 2
1 0 2 0 162 0
5 13 0 0 0 134
OA: 96.41% Kappa: 0.9568

147 0 0 0 2 0
0 141 0 0 0 0
0 0 114 0 0 0
0 1 0 118 0 4
0 0 1 0 115 0
0 1 0 3 0 121
OA: 98.44% Kappa: 0.9812

T— water; SOI — soil; SHA — shaded area; OA — overall accuracy.
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surface information under the shades in optical images can be seen in
SAR images. Therefore, the spectral confusions between shaded areas
and dark impervious surface in optical images can be significantly re-
duced with the additional use of SAR images.

5. Conclusions

Impervious surfaces are attracting increasing attention because they
are not only of significance in the urban environment, but also an indi-
cator of urbanization. Nevertheless, accuratemappingof urban impervi-
ous surfaces remains challenging due to the spectral diversity of
impervious surfaces. This study presents our efforts to synergistically
combine the two data sources to improve the mapping of impervious
Study Areas Optical Images Alone

Guangzhou

Shenzhen

Hong Kong

Fig. 6. Results of the imperv
surfaces by RF algorithm. Three combinations of optical and SAR images,
Landsat ETM+ and ENVISAT ASAR, SPOT-5 and ENVISAR ASAR, and
SPOT-5 and TerraSAR-X, were selected in three study areas, Guangzhou,
Shenzhen, and Hong Kong, to test the effectiveness of the methods.

The results indicate some interesting findings about the application
of RF to the fusion of optical and SAR data. Firstly, the built-in out-of-
bag (OOB) error is insufficient for accuracy assessment, and an assess-
ment with additional reference data is required for combining optical
and SAR images using RF. In this study, the overall accuracy (OA) and
Kappa coefficient were employed for an additional assessment. The
OA and Kappa coefficient show a consistent but slight difference
from the OOB error. Secondly, the optimal number of variables (m) for
splitting the decision tree nodes in RF should be different from that
Optical + SAR Images 

ious surface mapping.



Table 5
Confusion matrices for the impervious surface mapping.

Optical Optical + SAR

IS NIS IS NIS

Guangzhou
IS 248 19 261 6
NIS 25 472 19 478

OA: 94.24%
Kappa: 0.8740

OA: 96.73%
Kappa: 0.9288

Shenzhen
IS 304 15 310 9
NIS 15 640 15 640

OA: 96.92%
Kappa: 0.9301

OA: 97.54%
Kappa: 0.9443

Hong Kong
IS 254 1 255 0
NIS 5 508 3 510

OA: 99.22%
Kappa: 0.9825

OA: 99.61%
Kappa: 0.9912

Note: IS — impervious surface; NIS— non-impervious surface; OA — overall accuracy.
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suggested by the previously reported principle, which indicatesm as the
square root of the total variables. In this study, an empirical relationship
(Eq. 2) was provided for determining the parameterm. Thirdly, the op-
timal number of decision trees (T) in RF is not sensitive to the resolu-
tions and sensor types of optical and SAR images, and the optimal T in
this study is 20. Fourthly, the combined use of optical and SAR images
by RF is effective to improve the land cover classification and impervi-
ous surface estimation, by reducing the confusions between bright im-
pervious surface and bare soil and dark impervious surface and bare
soil, as well as shaded area and water surface. Even though the easily-
confused land classes tend to be different in different resolutions of im-
ages, the effectiveness of combining optical and SAR images is consis-
tent. This improvement is more noticeable for the fusion of optical and
SAR images with lower resolutions. The conclusions of this study
could serve as an important reference for further applications of optical
and SAR images, and as a potential reference for the applications of RF to
the fusion of other multi-source remote sensing data.
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