Analyzing the Interactive Effect of Race and Neighborhood Attributes in Predicting Traffic Stop Outcomes Using Artificial Intelligence

Amy Zhang (Undergraduate at The Wharton School), Shengxiao (Alex) Li (School of Public Policy, University of California Riverside)

I. Introduction

Racial bias exists in traffic stops when officers unnecessarily stop certain groups of drivers more often (Figure 1). Also, officers police some neighborhoods more due to racial composition and alcohol outlet density. This motivates us to analyze how social and built attributes interact to affect if a traffic stop results in a search and finding contraband. We use Gradient Boosting Decision Trees (GBDT) machine learning to predict the importance and interaction of factors in stop outcomes.

Figure 1: Traffic stop racial disparities in VT, despite contraband hit rates being similar (Norton, 2019)

II. Research Questions

1. What social and built attributes are related to the probability of being searched after traffic stops and the probability of discovering contraband after searches?
2. How can we use GBDT to quantify their interaction?

III. Dataset and Scope

Our traffic stop dataset has information for over 500,000 stops and comes from the San Diego Police Department and ArcGIS StreetMap Premium. Using the stop location information, the coordinates of the stops were matched with built and social environment data to give context on the environment where the stop took place.

IV. Literature Review

The Role of Racial Bias in Post-Stop Outcomes
Minority drivers are more likely to be searched and scrutinized more heavily, but equally likely to carry contraband (Chanin et al., 2018).

The Role of Neighborhood Characteristics in Policing
Crime varies across physical spaces, concentrating in hot spots like alcohol outlet-dense places that are heavily policed (Sherman et al., 1989; Grubesic et al., 2013). The racial composition of places of frisks can lead to racial disparities (Carroll & Gonzalez, 2014).

The Applications of the GBDT Method in Travel Behavior Studies
GBDT predicted how distance from a business district affects traffic behavior (Ding et al., 2018b).

Research Gaps

There's less literature on the interactive effect of race and built environment on stop outcomes, and regression models are less accurate than machine learning. Our project uses GBDT to add an understanding of how environment adds additional bias to decisions.

V. Methodology

The GBDT method combines multiple single decision trees to form a final prediction from multiple factors, shown below. A decision tree continually splits based on the predictor that provides the best fit.

We use GBDT for its precise prediction of factor importance and modeling factor interactions. GBDT can analyze if neighborhood characteristics interact with race in stop outcomes, an unexplored area.

VI. Preliminary Findings: Regression Results

Figure 2: Contraband find rates for drivers with different Black proportions

VII. Policy Implications

Target individual factors
Reduce crime hotspots through land design for fewer stops and less policing. Reduce racial bias with implicit bias training and increased decision time (Broadfoot, 2023).

Target interactive factors
Reduce situations prone to highest bias by banning pretextual stops (Parker, 2023) and establish stricter protocol. Show that policies with extreme disparities should be abolished.

VIII. Next Steps


References


