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Accurate information on urban areas at regional and global scales is important for both the science and policy-
making communities. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS)
nighttime stable light data (NTL) provide a potential way to map the extent and dynamics of urban areas in an
economic and timely manner. In this study, we developed a cluster-based method to estimate optimal thresholds
and map urban extent from the DMSP/OLS NTL data in five major steps, including data preprocessing, urban
cluster segmentation, logistic model development, threshold estimation, and urban extent delineation. In our

gﬂgﬁg& method the optimal thresholds vary by clusters and are estimated based on cluster size and overall nightlight
Nightlights magnitude. The United States and China, two large countries with different urbanization patterns, were selected
Urban area to test the proposed method. Our results indicate that the urbanized area occupies about 2% of total land area in
Threshold the US, ranging from lower than 0.5% to higher than 10% at the state level, and less than 1% in China, ranging from

Cities ) lower than 0.1% to about 5% at the province level with some municipalities as high as 10%. The derived thresholds
Segmentation and urban extent were evaluated using a validation sub-sample of high-resolution land cover data at the cluster
Land cover and land use change and regional levels. It was found that our method can map urban areas in both countries efficiently and accurate-
ly. The sensitivity analysis indicates that the derived optimal thresholds are not highly sensitive to the parameter
choices in the logistic model. Our method reduces the over- and under-estimation issues often associated with
previous fixed-threshold techniques when mapping urban extent over a large area. More importantly, our
method shows potential to map global urban extent and temporal dynamics using the DMSP/OLS NTL data in

a timely, cost-effective way.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction (Parshall et al., 2010) and the placement of urban infrastructure, while

small in area, has a disproportionate impact on potential net primary

The urban system is complex with various interacting components.
Urbanized area, a major feature of the urban system, represents popula-
tion centers and economic hubs largely characterized by surfaces occu-
pied by buildings, streets, and other infrastructure (Zhang & Seto, 2011).
Although urban areas occupy a relatively small fraction of total Earth's
surface, urbanization is one of the most important components of
human-induced land cover and land use change (LCLUC) and has pro-
found impacts on energy (e.g. urban heat island), water (e.g. flooding),
pollution, ecosystems, and carbon cycle from local to regional and even
global scales (Brabec, 2002; Foley et al., 2005; McKinney, 2008;
Shepherd, 2005; Zhou, Wang, Gold, & August, 2010; Zhou, Wang,
Gold, August, & Boving, 2013; Zhou, Weng, Gurney, Shuai, & Hu,
2012). For example, a previous study indicated that 37-86% of direct
fuel consumption in buildings and industry and 37-77% of on-road gas-
oline and diesel consumption in the US occurred in urban areas
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productivity because of the high native fertility of transformed soils
(Imhoff et al,, 2004; Nizeyimana et al.,, 2001).

Remote sensing has been recognized as a major source of consistent
and continuous data, and has been used to study urbanization and its
change across a variety of temporal and spatial scales (Schneider et al.,
2010; Zhang & Seto, 2011; Zhou & Wang, 2007; Zhou & Wang, 2008).
Much progress has been made in urbanization research using remote
sensing in terms of methodology development and analysis. Urbaniza-
tion and its related dynamics have been studied not only for individual
cities or greater metropolitan areas, but also across selected cities for
comparative purposes (Schneider & Woodcock, 2008). Although re-
searchers have started to pay attention to urbanization over large
areas, even at global scales (Zhang & Seto, 2011), there are still limited
investigations of large scale urban dynamics primarily due to the lack
of efficient and timely methods for mapping urban extent over large
areas.

Moderate spatial resolution remote sensing data have demonstrated
their capability in large scale and global urbanization mapping (Elvidge,
Sutton, et al., 2009; Elvidge, Tuttle, et al., 2007; Loveland et al., 2000;
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Schneider et al., 2010). For example, Schneider et al. (2010) developed a
500 m resolution global urban map using MODIS data from 2000 to
2002. Elvidge, Safran et al. (2007) built a global impervious surface
areas (ISA) map using nighttime lights, population counts, and high-
resolution ISA data. European Space Agency (ESA) generated a global
land cover map using the 300 m Medium Resolution Imaging Spectrom-
eter (MERIS) time series dataset (ESA, 2013). Moreover, with the help of
other data and techniques, a number of global urban or population dis-
tribution maps have been developed, i.e. the LandScan product
(Dobson, Bright, Coleman, Durfee, & Worley, 2000) and the Global
Rural-Urban Mapping Project (GRUMP) urban extent (CIESIN, 2011).
However, most of these global products have limited temporal cover-
age, with limited usefulness for dynamic analysis at large scales.
Although urban density (fractional urbanization) maps, e.g. global
map of ISA by Elvidge, Safran, et al. (2007) and Elvidge, Tuttle, et al.
(2007), can provide more information for the study of urbanization,
these products require further information such as population or higher
resolution supplementary data, which may be difficult to obtain for long
time periods over large scales. Moreover, some of these methods
require labor-intensive processing of a sufficient number of cloud-free
images, and issues of spectral and spatial consistency from different
scenes may exist.

The Defense Meteorological Satellite Program/Operational Linescan
System (DMSP/OLS) nighttime stable light data (NTL) data are, there-
fore, a valuable resource for regional and global urban mapping and ap-
plication to the study of human activities such as population density,
economic activity, energy use, and CO, emissions (Amaral, Camara,
Monteiro, Quintanilha, & Elvidge, 2005; Cao, Chen, Imura, & Higashi,
2009; Doll, Muller, & Elvidge, 2000; Elvidge, Baugh, Kihn, Kroehl,
Davis, et al., 1997; Elvidge, Safran, et al., 2007; Elvidge, Tuttle, et al.,
2007; Imhoff, Lawrence, Stutzer, & Elvidge, 1997; Oda & Maksyutov,
2011; Sutton, 2003; Zhang & Seto, 2011). However, there are several
shortcomings in this data, including limited dynamic range, signal satu-
ration in urban centers, contamination from other sources such as gas
flares, lack of a well-characterized point spread function (PSF), and
lack of a well-characterized field of view (Elvidge, Sutton, et al., 2009).
In particular, OLS-derived light features are substantially larger than
the lighting sources on the ground, and local economic conditions
may have different impacts on the detection and brightness of satellite
observed lighting (Elvidge, Sutton, et al., 2009). It was found that the
DMSP/OLS NTL data tend to exaggerate the size of urban areas com-
pared to the Landsat analysis, due to several contributing factors, includ-
ing the reflectance of light from surrounding water and non-urban land
areas, georeferencing errors, and warm atmospheric phenomena
(Henderson, Yeh, Gong, Elvidge, & Baugh, 2003). For example, the con-
siderable excursion of reflected light onto water bodies causes pixel
blooming along the shorelines of large metropolitan areas and the
resulting overestimation produces enlarged small towns and expanded
boundaries of large cities (Imhoff et al., 1997).

A number of methods have been developed to map urban areas
using the DMSP/OLS NTL data (Cao et al., 2009; Elvidge, Tuttle, et al.,
2007; Frolking, Milliman, Seto, & Friedl, 2013; He et al., 2006; Liu, He,
Zhang, Huang, & Yang, 2012; Lu, Tian, Zhou, & Ge, 2008; Owen, 1998;
Small, Pozzi, & Elvidge, 2005; Sutton, Cova, & Elvidge, 2006). Simple
threshold techniques showed potential in generating reasonable
urban mapping products at the regional and national scales by using
the DMSP/OLS NTL data (Amaral et al., 2005; Henderson et al., 2003;
Imhoff et al., 1997; Kasimu, Tateishi, & Hoan, 2009). However, the
choices of optimal thresholds may vary across regions and countries
due to the regional variation in physical environment and socioeconom-
ic development status (Cao et al., 2009; Liu et al., 2012; Small et al.,
2005). The determination of appropriate thresholds in delineating
urban areas using the DMSP/OLS NTL data is one of the major challenges
in urban mapping over large areas (Henderson et al., 2003 ). Applying a
single threshold to the DMSP/OLS data may be problematic, especially
across multiple cities or political boundaries (Imhoff et al., 1997). For

example, Henderson et al. (2003) found a range in optimal thresholds
for urban mapping across different cities with stable light land area lit
thresholds of 92% for San Francisco, 97% for Beijing, and 88% for Lhasa,
all of which were higher than the thresholds of 82% and 89% for the
continental US reported by Imhoff et al. (1997).

Due to the issues in existing global and regional based threshold
techniques and their inflexibility, it is necessary, and also a research
challenge, to derive optimal thresholds specific to different cities or
urban clusters using the DMSP/OLS NTL data in ways that are neither
costly nor complex and are globally applicable. In this study, we devel-
oped a cluster-based method to estimate the optimal thresholds and de-
lineate the urban extent, and selected the contiguous United States and
China, two countries with different urbanization patterns, and also with
high quality land-cover data, as experimental areas. This paper focuses
on the development of the new threshold method through calibration
and validation using a sub-set of regional high-resolution reference
data. The remainder of this paper describes the study area and data
(Section 2), details of the five major steps of our method (Section 3), a
discussion of the results and findings (Section 4), and concluding re-
marks (Section 5).

2. Study area and data

In this study, the contiguous US and China were chosen as the exper-
imental areas. These two study areas have different urbanization pat-
terns. In particular, urbanization levels in China vary greatly across
space, attributable to the heterogeneous socioeconomic development
whereas urbanization is somewhat more uniform in the US. The differ-
ent urbanization densities and patterns in the US and China provide
ideal experimental regions for evaluating the global applicability of
the proposed urban mapping method.

The major data used in this study are DMSP/OLS NTL, high spatial
resolution regional land cover, a water mask, and a gas flare mask. The
DMSP/OLS, designed to collect global cloud imagery (Elvidge, Erwin,
et al., 2009), can provide a systematically collected, unbiased global
nightlight dataset, and has a number of unique features that meet the
needs of wide-scale, frequently repeated surveys of urban growth
(Henderson et al., 2003). More importantly, the DMSP/OLS NTL data
have an annual temporal coverage at the global level from 1992 to the
present. The DMSP/OLS NTL measures lights on the Earth's surface
from cities and settlements with persistent lighting, and others such
as gas flares, fires, and illuminated marine vessels (Zhang, Schaaf, &
Seto, 2013). The data at each pixel are recorded as a digital number
(DN) from 0 to 63 with a 1 km spatial resolution, spanning — 180° to
+180° in longitude and —65° to + 75° in latitude. The annual cloud-
free composites were built using the highest-quality data based on a
number of constraints (Elvidge, Zisken, et al., 2009). In this study, we
chose NTL data in the years 2006 and 2005 for the US and China, respec-
tively, to be temporally consistent with the high spatial resolution land
cover datasets used for training and evaluation.

High spatial resolution land cover datasets were acquired from
existing sources for developing and testing the proposed method. Spe-
cifically, the high-resolution data for the US and China were obtained
from the US Geological Survey National Land Cover Dataset (NLCD)
and the Resources and Environment Data Center of the Chinese Acade-
my of Science, respectively, both with an original spatial resolution of 30
m (Homer, Huang, Yang, Wylie, & Coan, 2004; Liu et al,, 2010). The land
cover types mainly include open water, urban, evergreen forest, decid-
uous forest, shrub, grassland, cropland and wetland. The land-cover
data for China were built through visual interpretation of Landsat TM
images and processed to a 1 km percentage map of each land cover
type (Liu et al., 2010). The US land-cover data layer was also upscaled
from a 30 m to a 1 km spatial resolution. Urban areas from all 30 m
pixels within a 1 km pixel were summed and converted to percentage,
resulting in an urban percentage map. To be consistent with the binary
urban map we will derive from the nightlights data, we need to
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translate percentage urban cover from the land-use data to a binary
classification. Here, we define urban land as those 1 km pixels with
urban percentages larger than 20%, which is consistent with the land
use category of developed areas (impervious surfaces >20%) as defined
in the NLCD dataset (Fry et al., 2011). Thus, one 1 km binary urban map
was constructed for each country considered. In addition, a water mask
was derived from MODIS 250 m land-water mask (MOD44W), and gas
flare data were obtained from the NOAA National Geographic Data
Center (Elvidge, Ziskin, et al., 2009).

3. Methods

Threshold techniques have shown potential in generating reason-
able urban mapping products at the regional and national scales by
using the DMSP/OLS NTL data. In these methods, the pixels with NTL
magnitude values larger than some optimal threshold value are classi-
fied as urban and all others as nonurban. However, determining optimal
thresholds for all cities in a study region is difficult and still remains a
challenge. We develop here a cluster-based method to estimate optimal
thresholds and map urban extent using DMSP/OLS NTL and supplemen-
tary data. This method includes five major steps: data preprocessing,
urban cluster segmentation, logistic model development, threshold esti-
mation, and urban extent delineation (Fig. 1). First, we filtered NTL data
by excluding water and gas flare pixels. Second, we identified potential
urban clusters, which are groups of similar and continuous pixels, from
filtered NTL data using a segmentation method. Third, we analyzed the
relationship of optimal threshold derived from high spatial resolution
land cover data with cluster size and NTL magnitude in each cluster,
and built a logistic model for optimal threshold estimation. In our meth-
od, the threshold is defined as the DMSP/OLS DN value above which the
pixel is classified as urban area. The threshold value is allowed to vary
between urban clusters. Fourth, we estimated the optimal threshold

Preprocess

value for each cluster using the logistic model. Finally, we mapped the
urban extent according to the estimated threshold in each cluster.
Each step will be discussed in detail in the following subsections.

3.1. Data preprocessing

In the data preprocessing step, we filtered the original NTL data by
removal of water and gas flare pixels. All of the data were processed
to the same projection and spatial resolution as those of the DMSP/
OLS NTL data. Gas flares have features similar to urban lighting in the
DMSP/OLS NTL data, and they occur in remote locations, outside urban
centers (Elvidge, Ziskin, et al., 2009). They introduce errors in urban
mapping and may cause an overestimation of the urban areas. The gas
flare data were produced from DMSP/OLS NTL data by Elvidge, Ziskin,
etal. (2009). For this product, a 30 arc second global population density
grid from the US DOE was used to evaluate lights identified as potential
gas flares. NASA MODIS satellite hot spot data were also used to assist in
clarifying the identity of gas flares on land. A mask of gas flare pixels is
used to exclude these pixels to eliminate this element of overestimation.
A water mask from the MODIS MOD44W product was used to exclude
pixels with water percentage larger than 50% to reduce the influence
of pixel blooming along the shorelines of large metropolitan areas.

3.2. Urban cluster segmentation

The next step was to delineate potential urban clusters, which are
areas composed of continuous similarly lighted areas in NTL images.
This application requires an automatic and efficient method that is
effective for single-band NTL DN values. The Marker-controlled Water-
shed Segmentation algorithm was chosen to segment the filtered NTL
image after gas flares and water pixels were excluded (Parvati et al.,
2008). A number of segmentation algorithms have been developed,

30m Land
Cover

Upscaling

Gas Flare

Mask

Filtered

Potential
Urban Clusters

Threshold
Based Maping

Cluster
Size and
NTL Mean

Threshold
Map

1 km Urban
Map

Random
Sampling

Training
Set

Logistic Model
Parameterization

Fig. 1. Flowchart of the cluster-based method.
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Fig. 3. Relationship between optimal thresholds derived from high resolution data and cluster size and NTL mean value in the US (left) and China (right) with a = 0.4 and b = 2 as example

parameters (Eq. (1)). The cluster size is measured as number of 1-km pixels.

generally for object-based classification in remote sensing (Blaschke,
2010; Definiens, 2009; Dey et al., 2010; Hay et al., 2003; Muiioz et al.,
2003; Woodcock and Harward, 1992; Zhou & Wang, 2008). For exam-
ple, Woodcock and Harward (1992) developed a multiple-pass algo-
rithm to extract forest information from multi-spectral Landsat
Thematic Mapper data. Zhou and Wang (2008) improved this algorithm
with additional shape information for high resolution ISA mapping.
Most of these segmentation algorithms perform well driven by multiple
bands of spectral information from high spatial resolution remote sens-
ing data. Mufioz et al. (2003 ) presented a summary of segmentation al-
gorithms and argued that there was no perfect segmentation algorithm
for various applications. The algorithm developed by Parvati et al.
(2008) is based on gray-scale morphology, which is appropriate for
the single-band DMSP/OLS NTL data, similar to topographic features,
and can be easily applied to large datasets. In this algorithm, a robust
and flexible Marker-controlled Watershed Segmentation is used for
image segmentation after morphological processes. The segmentation
algorithm includes four major steps. First, a two-dimensional map of
gradient magnitude was built on the filtered NTL DN data. Second, fore-
ground markers, which are connected blobs of pixels within each of the

1.00 -
0.75 -
& 0.50 -
0.25 -
0.00 -

1 o 1 1 1 1
0.0 0.5 1.0 15 2.0
alb

Fig. 4. Parameter selection for the US and China for the logistic model.

objects, were obtained using morphological reconstruction. Third, the
background markers, the dark pixels belonging to the background,
were created through distance transform and watershed transform of
the modified image. Finally, the watershed-based segmentation meth-
od, in which the boundaries of the objects are expressed as ridges,
was applied on the processed gradient image with foreground and
background markers by region growing to get the final segmented
map of potential urban clusters (Fig. 2). Not all pixels in each potential
cluster are urban, and the percentage of actual urban area in a potential
cluster varies with clusters. Urban extent could be 0% in the cases where
all pixels in a cluster fall below the threshold value. Urban pixels will be
classified in each potential cluster based on the optimal threshold,
which will be estimated using a logistic model in the next step. The
total number of potential urban clusters in the US is more than twice
that in China.

3.3. Logistic model

As discussed in the Introduction, urban extent is prone to being
overestimated because the OLS-derived light features are substantially
larger than the lighting sources on the ground due to several contribut-
ing factors. The threshold to delineate urban extent varies across coun-
tries, regions, and urban clusters. The exaggeration in the OLS NTL data
is generally proportional to the lighting magnitude and cluster size.
However, the relative contribution from each is unknown. Therefore,
we propose an index x, which combines effects from both mean lighting
magnitude and cluster size, where the contribution of each of these
effects is variable and yet to be determined. We will then evaluate the
relationship of this index to the optimal threshold value. Moreover,
the index is transformed through a natural log to approach a normal
distribution and facilitate its use over a range of magnitude values.

x=In <S“NTLmeanb) (1)

where S is the cluster size, NTL ,0qn 1S the mean NTL DN in each cluster,
and a and b are coefficients to be estimated below.

We then examined the relationship between the index x and the op-
timal threshold. For each cluster, the value of x is directly obtained by
computing the cluster size and the mean NTL DN magnitude. The opti-
mal threshold in each cluster was indirectly estimated by comparing






Y. Zhou et al. / Remote Sensing of Environment 147 (2014) 173-185 179

the 1 km binary reference urban maps with the filtered NTL data, in-
cluding two steps. First, the fraction of urban area within the cluster
was calculated from the 1 km binary reference map. Second, because a
given threshold will lead to a unique estimated fraction of urban area
for each cluster using the NTL data, the optimal threshold can be chosen
as the one that can give the same fraction of urban area in the NTL clus-
ter as that from the 1 km reference map. The so-derived optimal thresh-
old shows a strong functional relationship with the index x. Fig. 3 shows
this relationship using the values a = 0.4 and b = 2. The optimal values
for these parameters will be determined in the next step.

Fig. 3 indicates a nonlinear, slightly S-shaped, relationship between
the optimal threshold and index x. Motivated by this finding, we built
a logistic model of the relationship between the index x and the optimal
threshold (Fig. 3, Eq. (2)) as follows:

1

NTLiya = 11+ e PE Xnea)

(NTLmax_NTLmin) + NTLmin (2)

where NTL;q is the optimal threshold to delineate the urban area in the
potential cluster, and X,;eq, is the mean value of x, and it is calculated as
the mean of all x values. NTL,;, and NTLy.x are minimum and maxi-
mum NTL DN in the study area, and (3 is the coefficient for the logistic
model.

In Eq. (2), a, b, and 3 are unknown. To reduce the number of param-
eters, the index x is modified as x’ (Eq. (3)).

X =In (s% : NTLmean). 3)

Now, B and b can be estimated jointly in the logistic model as a single
coefficient 3’ as shown in Eq. (4).

1

NTlLgug = 1+ e PO Xnean)

(NTLmax _NTLmin) + NTLmin' (4)

Eq. (4) can be converted to a linear form, and the combined coeffi-
cient (3’ can be calculated using ordinary least squares (OLS) regression.
Xmeah is the mean value of x'.

NTLyax=NTLyin <\ s
'“(NTLM—NTLm 1) =—kx ®)

Threshold (Predicted)

0 ) 1 1 U
0 20 40 60
Threshold (High Resolution Land Cover Data)

The coefficient a/b indicates the relative weight of mean NTL magni-
tude and cluster size contributing to the index x. The coefficient 8 indi-
cates how quickly the optimal threshold changes with changing index x.

We then examined the relationship between R? in Eq. (5) based on
OLS regression and the coefficient a/b (Fig. 4) by using a training data
subsample, which is a randomly selected half of the potential urban
clusters in the US and China. The other half of the potential urban clus-
ters will be used as a validation dataset to evaluate the thresholds de-
rived from the proposed method. The regional value of the coefficient
a/b with the highest R? will be used in the calculation of the index x’
(Eq. (3)) in each potential urban cluster. We then calculated the coeffi-
cient ' in Eq. (4) using the same training data subsample.

3.4. Threshold estimation

The coefficients a/b and 3’ estimated using the training dataset are
0.24 and 0.84 in the US, and 0.22 and 0.88 in China, respectively. The dif-
ference in a/b between these two regions indicates that cluster size is a
slightly more important determinant of the optimal threshold in the US
as compared to China. The difference in 3’ between these two regions
shows that the optimal threshold changes with changing index x
slightly more quickly in China as compared to the US. Using the estimated
coefficients a/b, we calculated x’ using the cluster size and NTL DN
magnitude (Eq. (3)), and then together with 3/, we estimated the optimal
threshold in each cluster to delineate the urban extent (Eq. (4)) for all
clusters in the US and China.

3.5. Urban extent mapping

With the optimal threshold estimated for each cluster, the pixels in
each cluster with NTL DN larger than the optimal threshold were classi-
fied as urban and all others as nonurban. The final urban map products
in the US and China were then generated.
4. Results and discussion

4.1. Threshold

The optimal thresholds tend to be larger in larger clusters with
higher NTL DN in both countries (Fig. 5), which is an expected finding

Threshold (Predicted)

0 ’ 1 1 1
0 20 40 60
Threshold (High Resolution Land Cover Data)

Fig. 6. Comparison of thresholds from the logistic model and high-resolution land cover data in the US (left) and China (right) for the validation data subsample.
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(Fig. 3, Eq. (2)). In large urban clusters such as Boston and Beijing, the
optimal thresholds reach as high as 60 while they are as low as 20 in
small urban clusters. Our technique of determining optimal thresholds
based on size and NTL DN magnitude can help to reduce under- and
over-estimation, which has been a major issue with the use of a single
threshold in regional or national studies.

To evaluate the performance of the logistic model, we use the valida-
tion subsample of potential urban clusters. For these clusters, the opti-
mal thresholds estimated using the logistic model were compared
with those derived directly from the 1 km reference binary urban
maps. R? and Root Mean Square Error (RMSE) between the two esti-
mates are shown in Fig. 6. It was found that the logistic model performs
well in deriving the threshold in both the US (R?: 0.96, RMSE: 3.1) and
China (R?: 0.91, RMSE: 4.2).

A sensitivity analysis was performed for a/b and 3’ to examine how
changes in these parameters impact optimal thresholds (Fig. 7). Both

Threshold (Predicated)
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0 20 40 60
Threshold (High Resolution Land Cover Data)
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0 1 1 1

0 20 40 60

Threshold (High Resolution Land Cover Data)

parameters can have important impacts on optimal thresholds in both
countries when they deviate from their optimum values. These two pa-
rameters show similar patterns of sensitivity to optimal thresholds in
both the US and China. The impact of the parameter a/b directly shifts
all optimal thresholds up or down from the 1:1 line. Optimal thresholds
are underestimated with lower a/b while they are overestimated with
higher a/b. The impact of the parameter (3’ rotates optimal thresholds
at a certain point on the 1:1 line. Higher 3’ leads to underestimated op-
timal thresholds in the low value range and overestimated optimal
threshold in the high value range. Lower (3’ gives the opposite effect. It
is important to note that the derived optimal thresholds are not highly
sensitive to the parameter choices when these parameters are suffi-
ciently close, e.g. 20%, to the optimal values. In all cases in the figure,
the reduction of R? is negligible (<0.01). Regarding RMSE, it increases
by about 0.9 and 0.6, respectively, in the US and China when a/b devi-
ates from the optimal values by 20%. RMSE increases by about 0.6 and

Threshold (Predicated)

0 ’ 1 1 1
0 20 40 60

60 =

40-

0.6

Threshold (Predicated)

20 =
0.7
0.8
09
1.0
0 1 1
0 20 40 60

Threshold (High Resolution Land Cover Data)

Fig. 7. Sensitivity of optimal thresholds to the optimal parameters a/b (top) and 3 (bottom) in the US (left) and China (right) for the validation data subsample.
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0.4, respectively, in the US and China when 3’ deviates from the optimal
values by 20%. This lack of sensitivity near the optimal value can also be
seen in Fig. 4.

4.2. Urban extent

With optimal thresholds calculated from the logistic model using the
training data subsample, we delineated urban extent in the US and
China using the complete filtered NTL data and potential urban cluster
maps for each region (Fig. 8, top). The result shows the spatial patterns
of urban area in the US in 2006 and China in 2005. The total urban areas
are 160,000 km? and 37,000 km? in the US in 2006 and in China in 2005,
respectively. Urban area in the US is more heterogeneous with centers
spotted across the country, whereas in China, urban area tends to aggre-
gate in eastern coastal regions. Urbanized area occupies about 2% of the
total area in the US. The urbanization extent in terms of urban area per-
centage varies from lower than 0.5% in states in the US census region of
Mountain and West North Central, such as Montana, Wyoming, South
Dakota and North Dakota, to higher than 10% in the Eastern Coastal
states such as New Jersey, Massachusetts, Connecticut, and Maryland.
The urbanized area occupies less than 1% of total land area in China,

and varies in extent from lower than 0.1% in some western provinces
such as Xizang, Qinghai, and Xinjiang, to about 2% in the eastern coastal
provinces such as Jiangshu and Guangdong. It is as high as 10% in munic-
ipalities such as Beijing and Shanghai.

A visual comparison with high-resolution urban area maps (Fig. 8,
bottom) indicates that our method can delineate most of the large
urban centers in both the US and China, and the extent of the urban
areas from NTL and high-resolution land cover data matches relatively
well (Fig. 8). We also selected four cities of different sizes in the US
and China to evaluate urban extent mapped from NTL data (Fig. 9). A vi-
sual comparison shows that our proposed method can map the urban
extent relatively well for example cities. The mapped urban extent
tends to be less fragmented compared to those from high-resolution
land cover data due to the lower spatial resolution of NTL data. Both
representations of urban area have their strengths in applications. Infor-
mation from high resolution data with fragmented representation of
urban area is more helpful in urban studies at local scales while the in-
formation from our data, which is closer to a real world concept of a city
in terms of urban area, is useful in large scale urbanization studies.

Using NTL to map urban extent can capture areas such as airports
that are not classified as urban in some land-cover data, which defines
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Fig. 9. Evaluation of mapped urban extent in four selected cities in the US and China: (a) DMSP NTL data, (b) Bing imageries, (c) urban extent from high-resolution land cover data, and
(d) urban extent mapped from NTL data. The boundaries in blue on panels (b), (c), and (d) were derived from NTL data in panel (a). (For interpretation of the references to colors in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Comparison of urban extent (in number of 1-km urban pixels) from the cluster-based method and 1 km reference urban map at the cluster level in the US (left) and China (right).

urban area differently. The feature to the north west of the Beijing city
center in our NTL-based urban area map is the Beijing airport area,
which is not classified as urban in the reference urban dataset (Fig. 9).
Note that airport areas retrieved from NTL data were considered overes-
timates in a previous study (Sutton, Elvidge, & Obremski, 2003).

4.3. Validation of urban extent

In addition to the visual comparison, we compared the derived
urban extent using this cluster-based method to those from the
1 km reference urban map at the cluster and regional levels
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(Figs. 10 and 11). For the US, our method performs well at the clus-
ter level (R?: 0.98, RMSE: 27) and the state level (R*: 0.98, RMSE:
697 1-km pixels) (Figs. 10 and 11, left). Although it is not as good
as the performance in the US, this method still performs reasonably
well in China at both the cluster level (R?: 0.85, RMSE: 24) and the
province level (R?: 0.86, RMSE: 531 1-km pixels) (Figs. 10 and 11,
right). Considering the purpose of this product for large-scale
urban area mapping and monitoring and also limited by the spatial
resolution of NTL data, accuracy at the pixel level is also good (USA:
overall accuracy of 91%, Kappa Coefficient of 0.69, producer accuracy
of 76%, and user accuracy of 73%; China: overall accuracy of 93%,
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Fig. 11. Comparison of urban extent (in number of 1-km urban pixels) from the cluster-based method and 1 km reference urban map at the state/province level in the US (left) and China

(right).
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Kappa Coefficient of 0.54, producer accuracy of 65%, and user accura-
cy of 52%) though it is not as good as urban mapping using high spa-
tial resolution data such as IKONOS. It was also found that the
misclassification generally occurs on boundaries of urban clusters
and green space within urban clusters.

5. Conclusions

In this study, we developed a cluster-based method to estimate op-
timal thresholds and delineate the urban extent from DMSP/OLS NTL
data. In this method the optimal threshold for each potential urban
cluster is estimated based on urban cluster size and overall nightlight
magnitude in the cluster using a logistic model, resulting in thresholds
specific to each urban cluster. The derived optimal thresholds are not
highly sensitive to the parameter choices in the logistic model when
these parameters are sufficiently close to the optimal values. The
similarity of the parameters in both countries and their insensitiv-
ity in the logistic model demonstrate the potential applicability of
this method more generally for global urbanization and dynamic
mapping.

The total urban areas derived from the DMSP/OLS NTL data are
160,000 km? and 37,000 km? in the US in 2006 and in China in 2005, re-
spectively. The urbanized area occupies about 2% of the total area vary-
ing from lower than 0.5% in states in the US census region of Mountain
and West North Central to higher than 10% in the Eastern Coastal states.
The urbanized area occupies less than 1% in China, ranging from lower
than 0.1% in some western provinces to about 2% in the Eastern coastal
provinces, with some municipalities as high as 10%.

Our evaluation of estimated optimal thresholds and mapped urban
extent at the cluster and regional levels in the US and China confirms
its utility in mapping global urban area and its dynamics using the
DMSP/OLS NTL data in a timely, cost-effective way. We conclude that
cluster-based optimal thresholds can map urban extent more accurately
compared to global threshold techniques. Even compared to previous
regional level threshold techniques, our method successfully tackles
the issue of under- and over-estimation. There is no need to manually
define boundaries such as economic regions with urban clusters of dif-
ferent sizes and NTL magnitudes, to calculate the optimal thresholds
(Liu et al., 2012). Moreover, in previous regionally-based methods,
some urban centers may cover multiple regions, which will result in
the use of different optimal thresholds for the same urban cluster. Fi-
nally, the simplicity of this method makes it promising for rapidly
monitoring urban areas globally and regionally using the DMSP/
OLS NTL data.

The results presented here offer several possible avenues for future
research. DMSP/OLS blooming within the clusters because of spatial
resolution, overlap of adjacent pixels, and geo-location errors, are not
addressed in this method (Elvidge, Baugh, Kihn, Kroehl, & Davis,
1997). Although the 1-km urban data can be upscaled to a fraction
map at coarse resolution for applications such as earth-system model-
ing at global or regional levels (Jacobson & Ten Hoeve, 2012), the
urban percentage within a pixel at 1-km cannot be derived using our
proposed method. In order to address these issues, supplementary
data such as MODIS NDVI may be helpful to improve urban extent map-
ping from the DMSP/OLS NTL data. In addition, NTL data with finer spa-
tial resolution and higher quantization levels are becoming available,
such as those from the Visible Infrared Imager Radiometer Suite
(VIIRS) (Elvidge, Erwin, et al., 2009), which will potentially help to
build better global urban maps using our proposed method. Given the
limited temporal coverage of most global products, the method devel-
oped in this work provides a tool potentially useful to map global
urban dynamics for over two decades by using DMSP/OLS NTL data.
However, as the DMSP/OLS NTL products are not radiometrically cali-
brated, additional effort, such as inter-calibration of multiple-year NTL
data, will be necessary to build a consistent NTL dataset.
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